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Higher-order unconditionally stable algorithms to solve the time-dependent Maxwell equations
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For the recently introduced algorithms to solve the time-dependent Maxwell equations@J. S. Kole, M. T.
Figge, and H. De Raedt, Phys. Rev. E64, 066705~2001!#, we construct a variable grid implementation and an
improved spatial discretization implementation that preserve the exceptional property of the algorithms to be
unconditionally stable by construction. We find that the performance and accuracy of the corresponding
algorithms are significant and illustrate their practical relevance by simulating various physical model systems.
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I. INTRODUCTION

In a recent paper, we introduced a family of algorithms
solve the time-dependent Maxwell equations@1#. Salient fea-
tures of these algorithms include the rigorously provable
conditional stability ford-dimensional systems (d51,2,3)
with spatially varying permittivity and permeability, as we
as the exact conservation of the energy density of the e
tromagnetic~EM! fields. Furthermore, we have demonstrat
that without affecting the unconditional stability of the alg
rithms the order of accuracy in the time integration can
systematically increased. An important aspect that has
been considered in our earlier work@1# concerns the effect o
the discretization of space on the accuracy of the algorith
Previously, we employed only the most simple spatial d
cretization, namely, the central-difference scheme on a C
tesian grid with a constant mesh size@1#. We refer to this
spatial discretization scheme as thesimple spatial implemen
tation. Many numerical simulations of realistic physical sy
tems require algorithms with a more accurate spatial disc
zation and a more flexible spatial grid for an optimal use
computer resources~CPU time and computer memory!. In
the present paper we show that implementing a fourth-o
accurate approximation of the spatial derivatives and a s
tial grid of variable mesh sizes preserve the unconditio
stability of the algorithms. We simulate various physic
model systems using these proposed implementation
demonstrate the significant improvement with respect to
required computer resources in the computation of eig
mode spectra and to study systematically the temporal
spatial accuracy of the algorithms.

Our presentation is organized as follows: We recapitu
the theory of constructing unconditionally stable algorith
to solve the time-dependent Maxwell equations in Sec. II a
describe the basic properties of the simple spatial implem
tation in Sec. III. Then, in Secs. IV and V, we present t
implementation of, respectively, the variable grid and the
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proved spatial discretization. Our conclusions are given
Sec. VI.

II. UNCONDITIONALLY STABLE ALGORITHMS TO
SOLVE MAXWELL EQUATIONS

We consider ad-dimensional model system of EM field
in a medium with spatially varying permittivity and/or pe
meability, surrounded by a perfectly conducting box. In t
absence of free charges and currents, the EM fields in su
system satisfy the Maxwell equations@2#

]

]t
H52

1

m
“3E and

]

]t
E5

1

«
“3H, ~1!

div «E50 and divmH50, ~2!

where H5(Hx(r ,t),Hy(r ,t),Hz(r ,t))T and E5(Ex(r ,t),
Ey(r ,t),Ez(r ,t))T denote, respectively, the magnetic fie
and the electric field vectors. The permeability and the p
mittivity are given bym5m(r ) and«5«(r ). For simplicity
of notation, we will omit the spatial dependence onr
5(x,y,z)T unless this leads to ambiguities. On the surface
the perfectly conducting box the EM fields satisfy the boun
ary conditions@2#

n3E50 and n•H50, ~3!

with n denoting the vector normal to a boundary of the s
face. The conditions, Eqs.~3!, assure that the normal com
ponent of the magnetic field and the tangential compone
of the electric field vanish at the boundary@2#. Some impor-
tant symmetries of the Maxwell Eqs.~1! and~2! can be made
explicit by introducing the fields

X~ t !5AmH~ t ! and Y~ t !5A«E~ t !. ~4!

In terms of the fieldsX(t) and Y(t), the time-dependen
Maxwell equations~1! read

]

]t S X~ t !

Y~ t !
D 5S 2

1

Am
“3

1

A«
Y~ t !

1

A«
“3

1

Am
X~ t !

D [HS X~ t !

Y~ t !
D , ~5!
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where the operatorH is given by

H5S 0 2
1

Am
“3

1

A«

1

A«
“3

1

Am
0

D . ~6!

Writing C(t)5„X(t),Y(t)…T, Eq. ~5! becomes

]

]t
C~ t !5HC~ t !. ~7!

It is easy to show thatH is skew symmetric, i.e.
H T52H, with respect to the inner product̂CuC8&
[*VCT

•C8dr , whereV denotes the volume of the enclo
ing box. The formal solution of Eq.~7! is given by

C~ t !5U~ t !C~0!5etHC~0!, ~8!

whereC(0) represents the initial state of the EM fields. T
operatorU(t)5etH determines the time evolution. By con
struction iC(t)i25^C(t)uC(t)&5*V@«E2(t)1mH2(t)#dr ,
relating the length ofC(t) to the energy densityw(t)
[«E2(t)1mH2(t) of the EM fields@2#. As U(t)T5U(2t)
5U 21(t)5e2tH it follows that ^U(t)C(0)uU(t)C(0)&
5^C(t)uC(t)&5^C(0)uC(0)&. Hence the time-evolution
operatorU(t) is an orthogonal transformation, rotating th
vector C(t) without changing its lengthiCi . In physical
terms this means that the energy density of the EM fie
does not change with time, as expected on physical grou
@2#.

A numerical procedure that solves the time-depend
Maxwell equations necessarily starts by discretizing the s
tial derivatives. This maps the continuum problem describ
by H onto a lattice problem defined by a matrixH. The
corresponding time-evolution operator is given byU(t)
5etH. Ideally, this mapping should not change the ba
symmetries of the original problem. The underlying symm
try of the Maxwell equations suggests to use matricesH that
are real and skew symmetric. Since formally the time evo
tion of the EM fields on the lattice is given byC(t1t)
5U(t)C(t)5etHC(t), the second ingredient of the nu
merical procedure is to choose an approximation of the tim
evolution operatorU(t). The fact thatU(t) is an orthogonal
transformation is essential for the development of an unc
ditionally stable algorithm to solve the Maxwell equatio
@1#. A systematic approach to construct orthogonal appro
mations to matrix exponentials is to make use of the L
Trotter-Suzuki formula@3,4#

et(H11•••1Hp)5 lim
m→`

S )
i 51

p

etHi /mD m

, ~9!

and generalizations thereof@5,6#. Applied to the case of in-
terest here, the success of this approach relies on the b
but rather trivial premise that the matrixH can be written as
H5( i 51

p Hi , where each of the matricesHi is real and skew
symmetric. Expression, Eq.~9!, suggests that
06670
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U1~t!5etH1
•••etHp ~10!

might be a good approximation toU(t) if t is sufficiently
small. In fact, it can be shown thatU(t) and U1(t) are
identical up to first order int @7#. Most importantly, if all the
Hi are real and skew symmetric,U1(t) is orthogonal by
construction. Therefore, by construction, a numerical sche
based on Eq.~10! will be unconditionally stable. The
product-formula approach provides simple, systematic p
cedures to improve the accuracy of the approximation
U(t) without changing its fundamental symmetries. For e
ample, the orthogonal matrix

U2~t!5U1
T~2t/2!U1~t/2!

5etHp/2
•••etH2/2etH1etH2/2

•••etHp/2 ~11!

is identical toU(t) up to second order int @5,6#. Suzuki’s
fractal decomposition approach@5# gives a general method t
construct higher-order approximations based onU1(t) or
U2(t). A particularly useful approximation, which is ident
cal to U(t) up to fourth order int, is given by@5#

U4~t!5U2~at!U2~at!U2„~124a!t…U2~at!U2~at!,

~12!

wherea51/(4241/3). From Eqs.~10!–~12! it follows that,
in practice, an efficient implementation of a scheme based
U1(t) is all that is needed to construct the higher-order
gorithms, Eqs.~11! and~12!. The approximationsUn(t) are
identical to the exact time-evolution operatorU(t) up tonth
order int and have proven to be very useful in many app
cations@4,6–15#. They turn out to be equally useful for solv
ing the time-dependent Maxwell equations@1#. In particular,
it can be shown that the difference between the exact
field vector C(t)5U(t)C(0) and the approximate one
Cn(t)5Un(t)C(0) is bounded by@7#

i„U~ t !2Un~ t !…C~0!i5iC~ t !2Cn~ t !i<Cnttn, ~13!

where Cn is a constant. The rigorous upper bound on t
error of the EM field vector will be used to specify unco
ditionally stable algorithms by the temporal and spatial
curacies of the computed EM field. We denote an algorit
by TnSm if its implementation involves a time integratio
based onUn(t) and a spatial discretization scheme based
an mth-order accurate approximation of the spatial deriv
tives.

III. SIMPLE SPATIAL IMPLEMENTATION

In this section, we briefly recapitulate the construction
the unconditionally stable algorithm to solve Maxwell equ
tions in a one-dimensional~1D! system. Furthermore, we
discuss general properties of this implementation referr
also to the two-dimensional~2D! and three-dimensional~3D!
cases.

Maxwell equations for a 1D system extending along thx
axis contain no partial derivatives with respect toy or z. Also
« andm do not depend ony or z. Under these conditions, th
Maxwell equations reduce to two independent sets of fi
5-2
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HIGHER-ORDER UNCONDITIONALLY STABLE . . . PHYSICAL REVIEW E 65 066705
order differential equations@2#. The solutions to these se
are known as the transverse electric mode and the transv
magnetic~TM! mode @2#. Restricting our considerations t
the TM mode, it follows from Eq.~5! that the magnetic field
Hy(x,t)5Xy(x,t)/Am(x) and the electric fieldEz(x,t)
5Yz(x,t)/A«(x) are solutions of

]

]t
Xy~x,t !5

1

Am~x!

]

]x S Yz~x,t !

A«~x!
D , ~14!

]

]t
Yz~x,t !5

1

A«~x!

]

]x S Xy~x,t !

Am~x!
D . ~15!

Note that in 1D the divergence ofHy(x,t) and Ez(x,t) is
zero, hence Eqs.~2! are automatically satisfied. Using th
central-difference scheme, which yields a second-order a
rate approximation of the spatial derivatives, we obtain

]

]t
Xy~ i ,t !5

1

dAm i
S Yz~ i 11,t !

A« i 11

2
Yz~ i 21,t !

A« i 21
D , ~16!

]

]t
Yz~ j ,t !5

1

dA« j
S Xy~ j 11,t !

Am j 11

2
Xy~ j 21,t !

Am j 21
D , ~17!

where the spatial coordinate of an EM field componen
specified through the lattice indexi, e.g.,Xy( i ,t) stands for
Xy(x5 id/2,t), andd/2 the distance between two neighbo
ing lattice points. Following Yee@16# it is convenient to as-
sign Xy( i ,t) andYz( j ,t) to the odd, respectively, even num
bered lattice site, as shown in Fig. 1 for a grid ofn points.
The Eqs.~16! and~17! can now be combined into one equ
tion of the form Eq.~7! by introducing then-dimensional
vectorC(t) with elements

C~ i ,t !5H Xy~ i ,t !5Am iHy~ i ,t !, i odd

Yz~ i ,t !5A« iEz~ i ,t !, i even.
~18!

The vectorC(t) describes both the magnetic and the elec
fields on the lattice pointsi 51, . . . ,n and thei th element of
C(t) is given by the inner productC( i ,t)5ei

T
•C(t), where

ei denotes thei th unit vector in then-dimensional vector
space. Using this notation, it is easy to show that

C~ t !5U~ t !C~0! with U~ t !5exp~ tH !, ~19!

where the matrixH is represented by two parts,

H5H11H2 , ~20!

with

FIG. 1. Positions of the two TM-mode EM field components
the 1D grid.
06670
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H15 (
i 51

n22

8 b i 11,i~eiei 11
T 2ei 11ei

T!, ~21!

H25 (
i 51

n22

8 b i 11,i 12~ei 11ei 12
T 2ei 12ei 11

T !. ~22!

Here,b i , j51/(dA« im j ) and the prime indicates that the su
is over odd integers only. For oddn we have

]

]t
C~1,t !5b2,1C~2,t !

and

]

]t
C~n,t !52bn21,nC~n21,t !, ~23!

such that the electric field vanishes at the bounda
@Yz(0,t)5Yz(n11,t)50#, as required by the boundary con
ditions, Eqs.~3!.

The representation ofH as the sum ofH1 andH2 divides
the lattice into odd and even numbered cells. Most importa
however, both H1 and H2 are skew-symmetric block
diagonal matrices, containing one 131 matrix and (n
21)/2 real 232 skew-symmetric matrices. Therefore, a
cording to the general theory outlined in Sec. II, this deco
position ofH is suitable to construct an orthogonal appro
mation

U1~t!5etH1etH2 ~24!

that is identical to the time-evolution operatorU(t) up to
first order int. As the matrix exponential of a block-diagon
matrix is equal to the block-diagonal matrix of the matr
exponentials of the individual blocks, the numerical calcu
tion of etH1 ~or etH2) reduces to the calculation of (n
21)/2 matrix exponentials of 232 matrices. The matrix ex-
ponential of a typical 232 matrix appearing inetH1 or etH2

is simply given by

expFaS 0 1

21 0D G S C~ i ,t !

C~ j ,t ! D 5S cosa sina

2sina cosa D S C~ i ,t !

C~ j ,t ! D ,

~25!

and represents the rotation of two elements of the ve
C(t) leaving all the other elements unchanged. This pr
erty of the time-evolution operator, Eq.~24!, provides the
intrinsic possibility to parallelize the algorithms. Furthe
more, it is even possible to alter the ordering of the produ
in the time-evolution operatorUn(t) in order to construct an
efficient implementation for a particular system. The pla
rotations, Eq.~25!, are performed by simply processing a
arbitrarily ordered listSof pairs of EM field vector elements
using

U1~t!5)
S

etb i , j (eiej
T

2ejei
T), ~26!
5-3
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J. S. KOLE, M. T. FIGGE, AND H. DE RAEDT PHYSICAL REVIEW E65 066705
instead of the odd-even decomposition@Eq. ~24!# for
which S5$(1,2),(3,4),. . . ,(n22,n21),(2,3),(4,5),. . . ,
(n21,n)%.

The implementation for 1D can be readily extended to
and 3D systems, as has been illustrated in Ref.@1#. In 2D, the
Maxwell equations~1! separate again into two independe
sets of equations and the discretization of continuum spac
done by simply reusing the 1D lattice introduced above. T
is shown in Fig. 2 for the case of the 2D TM modes. T
construction automatically takes care of the boundary co
tions if nx andny are odd and yields a real skew symmet
matrix H. Correspondingly, in 3D the spatial coordinates a
discretized by adopting the standard Yee grid@16#, which
also automatically satisfies the boundary conditions, Eqs.~3!.
A unit cell of the Yee grid is shown in Fig. 3.

In general, the time stept and the distanced between
next-nearest neighbor grid points are related due to the e
that is introduced when the exact time-evolution opera
U(t) is replaced byUn(t). We have@5–7#

iU~t!2Un~t!i<g~d!S a~n!t

d D n11

. ~27!

Here, g(d) depends on the particular spatial discretizat
scheme used anda(n) represents the largest positive co
stant that appears as a prefactor in the exponential of
approximationUn(t). We finda(2)51/2 from Eq.~11! and
inspection of Eq.~12! yields a(4)5(1/2)(4a21)'0.33. It
follows that for a required spatial resolution, which det
mines the smallness ofd, the time step has to be chosen su
that

t<t* [
d

a~n!
, ~28!

in order to keep the error, Eq.~27!, small. As an example we
consider a wave packet in a 2D cavity that is simulated b
T4S2 algorithm. For numerical purposes we use dimensi
less variables throughout this paper, where the unit of len
is denoted byl and the vacuum light velocityc is taken as
the unit of velocity, while the permittivity« and permeability

FIG. 2. Positions of the three TM-mode EM field compone
on the 2D grid fornx59 andny55.
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m are measured in units of their corresponding values
vacuum, respectively,«0 andm0. The cavity with«51 and
m51 is of size 19315 and contains a dielectric medium
with «52.25 andm51 that has an inclined boundary. W
plot in Fig. 4 the results of simulations in which the wav
packet scatters on the dielectric medium. In the four pictu
we show the EM energy density distributions that are o
tained after simulation timet512.8 for a fixed mesh sized
50.1 and for four different time stepst. It follows from Eq.
~28! that the upper limit for the time step is given byt*
50.3 in this case. Fort50.4 the EM energy density distri
bution is, in fact, seen to change dramatically such that
results become meaningless. It should be noted that the l
tation, Eq.~28!, on the time step is different from the Cou
rant number that relates the time stept to the stability of
finite-difference time-domain~FDTD! algorithms @17# that
are based on the Yee algorithm@16#. The algorithms pre-
sented in this paper are unconditionally stable by constr
tion for any time stept and produce reasonable numeric
results up tot5t* , a time step at which the Yee-base
FDTD algorithms may have become unstable.

We conclude this section by noting that our algorithm
conserve the divergence of the EM fields only in 1D syste
but not in 2D and 3D systems. Although the initial sta
C(t50) can always be chosen such that the EM fields s
isfy Eqs. ~2!, the time integration of the Maxwell equation
by an algorithm based on the approximationUn(t) yields
EM fields whose divergence quickly acquires a finite va
and then remains constant in time. This is shown in Fig
where we plot the computed norm of the magnetic field
vergence in a 3D system as a function of time. The 3D s
tem is an empty cavity («51 andm51) of size 1.531.5
31.5 and we use theT2S2 algorithm. The reason for this
behavior of the EM field divergence is given by the fact th
the divergence operation commutes with the matrixH only
for a 1D system but not for 2D and 3D systems. Howev
we stress that the corresponding error is under control
can be reduced by using smaller time steps or algorith
with higher-order time accuracy. This can be seen in Fig
where we compare the algorithmsT2S2 and T4S2 as a

FIG. 3. Positions of the EM field components on the 3D Y
grid.
5-4
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HIGHER-ORDER UNCONDITIONALLY STABLE . . . PHYSICAL REVIEW E 65 066705
function of the time stept to show that the error in the EM
field divergence vanishes for theTnS2 algorithm propor-
tional to tn.

IV. VARIABLE GRID IMPLEMENTATION

The simple spatial implementation does not provide
optimal discretization scheme for physical systems of irre
lar geometrical shapes or with strongly varying permeabi
and/or permittivity. In a practical implementation of suc

FIG. 4. Energy density distributions at simulation timet512.8
for various time stepst obtained by theT4S2 algorithm for a fixed
mesh size d50.1. The wave packet with initial paramete
(sx ,sy)5(2,1.73), (x0 ,y0)5(5,7.5), andk58 @see for details Eq.
~55! in Sec. V B# impinges on the dielectric structure from the le
The cavity measures 19315 and contains a dielectric medium wit
«52.25 to the right of the line that connects the points (8.5,0) a
(13,15). The origin (0,0) is located at the lower left corner.
vacuum the energy density distribution is plotted in black at lo
tions of maximum intensity scaling and white at locations of ze
intensity. Inside the dielectric medium this scheme is inverted.

FIG. 5. The norm of the divergence of the magnetic field in a
empty cavity («51 andm51) of size 1.531.531.5 as a function
of time t. The computation is performed with theT2S2 algorithm
keeping the mesh sized50.1 fixed.
06670
n
-

y

systems the grid has to be variable with a small mesh siz
one region of the system and a large mesh size in ano
region of the system. In this section we show how to imp
ment a variable grid in such a way that the algorithms
solve the time-dependent Maxwell equations remain unc
ditionally stable by construction.

For the sake of simplicity we consider a 1D system tha
discretized using a variable grid as shown in Fig. 7. In
straightforward implementation of the variable grid w
would replace the constant next-nearest neighbor distand
in Eqs.~16! and~17! of the simple spatial implementation b
the corresponding variable distance. It is convenient to w
this substitution in the form

d→D i ,i 11F11
d i 21,i2d i 11,i 12

2D i ,i 11
G , ~29!

whered i , j is the distance between grid pointsi andj ~see Fig.
7! and

D i ,i 11[
1

2
~d i 21,i12d i ,i 111d i 11,i 12! ~30!

is the averaged next-nearest neighbor distance. It can be
ily checked that an implementation of the variable grid th
relies on the replacement Eq.~29! would destroy the skew-
symmetry property of the corresponding matrixH @see Eq.
~20!#. This is unphysical: The original form of the Maxwe
equations do have this property. However, a variable g
implementation that does preserve the underlying symm

d

-

FIG. 6. The norm of the divergence of the magnetic field in a
empty cavity («51 andm51) of size 1.531.531.5 as a function
of 1/t for the fixed mesh sized50.1. The computation is performe
with the algorithmsT2S2 andT4S2.

FIG. 7. Positions of the two TM-mode EM field components
the 1D variable grid.
5-5
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of Maxwell equations can be constructed for a sufficien
smooth, variable grid. In this case, the second term in
brackets of Eq.~29! may be neglected and the replaceme

d→D i ,i 115D i 11,i ~31!

may yield a resonable approximation of Eqs.~16! and ~17!
for the variable grid implementation:

]

]t
Xy~ i ,t !5

1

Am i
S Yz~ i 11,t !

D i ,i 11A« i 11

2
Yz~ i 21,t !

D i ,i 21A« i 21
D , ~32!

]

]t
Yz~ i 11,t !5

1

A« i 11
S Xy~ i 12,t !

D i 11,i 12Am i 12

2
Xy~ i ,t !

D i 11,iAm i
D .

~33!

The corresponding matrixH is seen to be skew symmetric

H5(
i 51

n

8 F eiei 11
T 2ei 11ei

T

D i ,i 11A« i 11m i

1
ei 11ei 12

T 2ei 12ei 11
T

D i 11,i 12A« i 11m i 12
G , ~34!

and may again be separated into odd and even parts of w
the exponents can be easily calculated following the sa
steps as given above in the simple spatial implementatio

It is obvious that this variable grid implementation can,
principle, be applied in any spatial dimensiond. However, it
is in general not possible to predict how to choose a grid
yields the best approximation to the true spectrum of eig
modes of any nontriviald-dimensional system. We, there
fore, studied the criteria for the choice of suitable varia
grids in particular systems numerically and present the
sults for a 1D and a 2D system in the remainder of t
section.

The 1D system under consideration consists of a cavit
lengthL510 with a constant permeabilitym51 and a vary-
ing permittivity «. The permittivity deviates from its vacuum
value («51) due to the presence of a dielectric medium w

FIG. 8. The 1D cavity with the dielectric structure~solid line!
and the two implemented variable grids: D i ,i 11

5$0.1↔0.05↔0.025% ~dashed line! and D i ,i 115$0.05↔0.025%
~dotted line!.
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«53 that is located in the middle of the cavity and exten
over a length of 2, as shown in Fig. 8. As a reference sys
we use a simple spatial implementation with constant ne
nearest neighbor distanced50.025 and calculate the eigen
modesvn of the corresponding matrixH. For two different
variable grids we calculate the corresponding eigenmodesṽn

and the deviationG(vn ,ṽn)512ṽn /vn relative to the
eigenmodes of the reference system. The two variable g
have in common that the dielectric medium and the tran
tions between«51 and«53 at both its sides is embedde
in a grid of constant next-nearest neighbor distance
equals that of the reference system (D i ,i 115d50.025). Fur-
thermore, at the left end and at the right end of the cavity
next-nearest neighbor distance is constant over a lengt
2.5 and equals, respectively,D i ,i 1150.1 andD i ,i 1150.05 in
the two variable grids. The transitions in the variable gr
between regions of constant next-nearest neighbor dista
involve abrupt steps between

D i ,i 1150.1↔D i ,i 1150.05↔D i ,i 1150.025, ~35!

where we kept the intermediate distanceD i ,i 1150.05 over
eight grid points, and between

D i ,i 1150.05↔D i ,i 1150.025, ~36!

respectively.
In Fig. 9 we plotG(vn ,ṽn) for the first 50 eigenmodes o

both variable grids. The relative deviation is seen to incre
with the number of the frequency modes. As high mo
numbers represent high frequencies this observation sim
reflects the general fact that the accuracy of the eigenmo
depends on the smallness of the mesh size~numerical disper-
sion!. Clearly, this also explains why the relative deviatio
G(vn ,ṽn) increases up to 2% for the variable grid wi
D i ,i 115$0.1↔0.05↔0.025%, while for the variable grid
with D i ,i 115$0.05↔0.025% this deviation remains well be
low 0.5%. For the first few frequency modes, however,
observe an increase inG(vn ,ṽn). This behavior can be re
lated to the error that is introduced in the variable grid imp
mentation by applying the approximation, Eq.~31!, instead
of the exact replacement, Eq.~29!. To check this statemen
we plot in Fig. 10 the deviationG(Vn ,ṽn) for the first 50
eigenmodes of the two variable grids relative to the eig
modesVn that belong to the variable grids of the exa
implementation, Eq.~29!. We see that the increase of th
relative deviation for the first few eigenmodes is, in fa
related to the error that is made by replacing the exact s
stitution, Eq.~29!, with the skew-symmetry conserving ap
proximation, Eq.~31!. This approximation leads to oscilla
tions of G(Vn ,ṽn) @and alsoG(v,ṽn)# that vanish with
increasing frequency mode number. From extended num
cal studies~results not shown! we find that these variation
depend on several factors, such as the size in the differe
between the largest and smallest distancesD i ,i 11 of the vari-
able grid implementation and on how abruptD i ,i 11 changes
with i. In practice, it will be necessary to check the robu
ness of numerical results obtained by a variable grid imp
5-6
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mentation against small changes in its parameters. Altho
this may sound as a serious disadvantage, the next exa
of a 2D system shows that for realistic applications it may
by far more efficient to perform several simulation runs w
a variable grid implementation than to use the simple spa
implementation.

The 2D system we consider is given by theL-shaped cav-
ity depicted in Fig. 11. In order to satisfy the conditions, E
~3!, at the boundaries, the EM fields change very stron
close to the sharp edge of the cavity. Large spatial change
the EM fields require a small mesh size. However, for
overwhelming part of the cavity a small mesh size wou
cause a waste of resources~computer memory and CPU
time!. Therefore, this system can be more efficiently sim
lated by a variable grid implementation with an increas
number of grid points near the edge. This is done by a u
form increase of the number of grid points along both thx
and they directions as is schematically drawn in Fig. 1
Furthermore, instead of using the odd-even decompositio
the time-evolution operator@corresponding to Eq.~24! for
the 1D system# on a square grid that would contain gr

FIG. 9. Relative deviationG(vn ,ṽn) for two variable grids.

FIG. 10. Relative deviationG(Vn ,ṽn) for two variable grids.
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points outside the L-shaped cavity, we perform the pla
rotations by processing a list of pairsSof the EM field vector
elements at the grid points that actually belong to
L-shaped cavity@corresponding to Eq.~26! for the 1D sys-
tem#.

In Table I we present the results of a numerical simulat
for the eight lowest TM eigenmodes in the cavity. We us
the T2S2 algorithm imposing a simple spatial implement
tion with d50.003 125 and a variable grid implementatio
with a mesh size ranging fromD50.05 to D50.003 125.
Very similar to the procedure described above for the
system, the mesh size is decreased by a factor 0.5 and
kept constant for several grid points to smoothen this tra
tion before the mesh size is decreased further. Our results
in good agreement with those obtained by the program pa
age GDFIDL @18# for the same 2D system~see Table I!. In
Table II we show the location of the arbitrarily chosen thir
lowest eigenmodev3 for several constant and variable gr
implementations of theT2S2 algorithm. In all simulations
we setd/t510, where in the case of a variable gridd is
replaced by the smallest mesh size. The relative errorG of
the frequencyv3 is measured with respect to the frequen
v354.916 of the system with constant mesh sized
50.003 125. The numerical results obtained within the va
able grid implementation are in excellent agreement with
results of the simple spatial implementation and the progr

FIG. 11. The L-shaped 2D cavity with a variable grid~schemati-
cally!.

TABLE I. The eight lowest TM eigenmodes of the L-shape
cavity ~see Fig. 11!.

Mode n T2S2 GDFIDL

Constant Variable Constant Variable
Grid vn Grid vn Grid vn Grid vn

1 2.9989 2.9913 2.9999 2.9992
2 3.9807 3.9500 3.9740 3.9720
3 4.9164 4.8857 4.9156 4.9102
4 5.4150 5.3843 5.4077 5.4004
5 5.5837 5.5453 5.5791 5.5710
6 6.0592 6.0209 6.0580 6.0494
7 6.7649 6.7265 6.7511 6.7377
8 6.8876 6.8492 6.8797 6.8674
5-7
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packageGDFIDL. TheT2S2 algorithm with the simple spatia
implementation andd50.003 125 consumes about 150 tim
more CPU time and 10 times more computer memory t
the T2S2 algorithm with variable grid implementation an
D5$0.05→0.003 125%. Clearly, these numbers justify add
tional simulation runs that are required to check the robu
ness of numerical results against small changes in the pa
eters of a variable grid implementation.

V. IMPROVED SPATIAL DISCRETIZATION
IMPLEMENTATION

Both conditional FDTD algorithms and the unconditio
ally stableTnSmalgorithms suffer from numerical dispe
sion due to the discretization of continuum space on a g
with a finite mesh size@17#. Methods to reduce numerica
dispersion are taking a grid with a smaller mesh size or e
ploying more accurate finite-difference approximations to
spatial derivatives. The former obviously can be also use
the simple spatial implementation of unconditionally sta
algorithms, however, for several reasons it may be more
sirable to implement higher-order accurate approximation
the spatial derivatives. For example, if one is interested
global features of the distribution of a system’s eigenmod
i.e., if we want to determineall eigenvalues, a higher-orde
accurate spatial derivative implementation would be stron
preferred. The computation of a system’s eigenmode sp
trum is performed by calculating the Fourier transform of t
inner productF(t)5^C(0)uC(t)& @1,19,20#. Using indepen-
dent random numbers to initialize the elements ofC(0), the
full eigenmode spectrum is obtained by averaging this F
rier transform. Taking just a smaller mesh size for the grid
the simple spatial implementation does not only reduce
numerical dispersion but also gives rise to more eigenmo
with high frequencies. In order to obtain the eigenmo
spetrum with the same spectral resolution, the sampling
F(t) would have to be done over smaller time intervals
volving the computation of more data points. It is thus de
able to implement, instead, higher-order accurate approxi
tions of the spatial derivatives that make a moderate us

TABLE II. Error in third-lowest eigenmode of theL-shaped cav-
ity ~see Fig. 11!.

Constant gridd v3 G ~in %!

0.1 4.571 7.5
0.05 4.740 3.7
0.025 4.832 1.7
0.0125 4.878 0.78
0.00625 4.901 0.31
0.003125 4.916 0

Variable gridD

0.1→0.05 4.717 4.2
0.1→0.025 4.801 2.4
0.1→0.0125 4.840 1.6
0.1→0.00625 4.878 0.78
0.05→0.003125 4.886 0.61
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computer resources in terms of CPU time and compu
memory.

The procedure for the construction of higher-order a
proximations to spatial derivatives is standard@21#. In the
present case, we apply this procedure keeping in mind
Maxwell equations~5! are skew symmetrical and that th
electric and magnetic field components are defined at
ticular grid points. The grid of ad-dimensional system with a
constant mesh size of distanced/2 between neighboring grid
points is shown in Figs. 1–3. Without loss of generality w
consider a 1D system, whereC( i ,t)5C( id/2,t) is the i th
component of the EM field vector and denotes an elec
field component for eveni and a magnetic field componen
for odd i ~see Sec. III for details!. Applying the second-orde
accurate central-difference scheme the spatial derivative
the EM field componentC( i ,t) is given by

]

]x
C~ i ,t !5

C~ i 11,t !2C~ i 21,t !

d
2

d2

6
C (3)~ i ,t !1O~d 4!,

~37!

where C (3)( i ,t)[]3C( i ,t)/]x3. Similarly, using the third-
nearest neighbor EM field points at distance 3d/2, we have

]

]x
C~ i ,t !5

C~ i 13,t !2C~ i 23,t !

3d
2

9d2

6
C (3)~ i ,t !

1O~d 4!. ~38!

A fourth-order accurate approximation of the spatial deriv
tive ]C( i ,t)/]x is now constructed in terms of a linear com
bination of Eqs.~37! and~38!, which is chosen such that th
terms proportional toC (3)( i ,t) vanish. We obtain:

]

]x
C~ i ,t !5

9

8 S C~ i 11,t !2C~ i 21,t !

d D
2

1

8 S C~ i 13,t !2C~ i 23,t !

3d D1O~d4!.

~39!

In practice, it is straightforward to implement the improve
spatial discretization, since we can use the implementatio
the central-difference scheme for the two terms separa
and then combine the results according to Eq.~39!. The cor-
responding matrixH of the 1D system@see Eq.~20!# changes
from tridiagonal to pentadiagonal, but most importantly
preserves its property of being skew symmetric. It should
noted, however, that the fourth-order accurate spatial der
tive introduces errors at the boundaries since the calcula
of ]C( i ,t)/]x for i 51, 2, n21, andn refer, respectively, to
grid pointsi 522, 21, n11, andn12 that lie outside the
cavity and are implicitly assumed to be zero.

It is obvious that the fourth-order accurate approximat
of the spatial derivatives can be similarly applied in syste
of any spatial dimensiond. In the remainder of this section
we study the numerical dispersion and the temporal and
tial accuracies of the algorithms for various 1D and 2D s
tems.
5-8



on
ve
th

M

o-
e-

on
n

m

nd

um

la

th
n

le-
-

atial

al-

act,

ve

e-
an

he
h
(
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A. Numerical dispersion

We illustrate the difference in the numerical dispersi
between the simple spatial implementation and the impro
spatial discretization implementation by a comparison of
eigenmode spectra of a 1D empty cavity («51 andm51) of
length L. In 1D, the continuum wave equation for the E
fields @2#,

F 1

c2

]2

]t2
2

]2

]x2GC~x,t !50, ~40!

is solved by the ansatzC(x,t)}cos(vt2kx1f) ~with a
phasef to distinguish electrical and magnetic field comp
nents! yielding the linear dispersion relation between fr
quencyv and wave numberk; v5cuku. Focusing on the
effect of the spatial derivatives on the numerical dispersi
we assume perfect time integration of the algorithms a
impose periodic boundary conditions on the EM field co
ponents: Cp( i ,t)}cos(vpt2kpd/21f) with wave number
kp52pp/L and 2L/(2d),p<L/(2d). Applying the
second-order accurate spatial derivative we obtain

]2

]x2
Cp~ i ,t !5

1

d2
@Cp~ i 12,t !22Cp~ i ,t !1Cp~ i 22,t !#

1O~d2!, ~41!

while for the fourth-order accurate spatial derivative we fi

]2

]x2
Cp~ i ,t !5S 9

8d D 2

@Cp~ i 12,t !22Cp~ i ,t !1Cp~ i 22,t !#

1S 1

24d D 2

@Cp~ i 16,t !22Cp~ i ,t !

1Cp~ i 26,t !#1S 9

96d2D @Cp~ i 12,t !1Cp~ i

22,t !2Cp~ i 14,t !2Cp~ i 24,t !#1O~d4!.

~42!

For m52 the analytical solution of the eigenmode spectr
for the mth-order accurate spatial derivative is given by

vp
252S c

d D 2

@12cos~kpd!#, ~43!

while for m54 we find

vp
25S c

d D 2

(
l 50

3

Cl cos~ lkpd!, ~44!

with coefficientsC05365/144,C15287/32,C253/16, and
C3521/288. We show in Fig. 12 that the dispersion re
tions that we obtained numerically by themth-order accurate
spatial derivative implementation for a 1D cavity of leng
L54, are in excellent agreement with the corresponding a
lytical solutions, Eqs.~43! and ~44!. It is clearly visible that
06670
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the dispersion relation computed by the simple spatial imp
mentation (T2S2 algorithm! suffers from numerical disper
sion already at frequencies abovev510, whereas for a grid
with the same mesh size the fourth-order accurate sp
derivative implementation (T2S4 algorithm! works well up
to v515.

B. Temporal and spatial accuracies

To perform a systematic study of the accuracy of the
gorithms as a function of the time stept and the mesh sized,
we compute the difference between the normalized ex
C(t), and the approximate,Cn,m(t), EM field vectors as
obtained by theTnSmalgorithm:

DCn,m~ t ![iC~ t !2Cn,m~ t !i . ~45!

We first consider the propagation of a Gaussian wa
packet in a 1D empty cavity («51 andm51) of lengthL
530. At t50 the Gaussian wave packet

Ez~x,t !5exp@2~x2x02ct!2/s2# ~46!

with standard deviations52 is located atx058. For t.0
the wave packet propagates with velocityc in thex direction
until it hits the right boundary of the cavity, becomes r
flected, and propagates in the opposite direction. To derive
analytical expression of the exact EM field vectorC(t), we
expandEz(x,t) in the TM modes,

Ez~x,t !52 (
n51

`

an sin~npx/L !sin@np~x01ct!/L#,

~47!

Hy~x,t !5
a0

2
1 (

n51

`

an cos~npx/L !cos@np~x01ct!/L#,

~48!

with coefficients

FIG. 12. Numerical and analytical dispersion relations for t
1D cavity of length L54 as obtained from calculations wit
mth-order accurate approximations of the spatial derivativesm
52,4). In both simulations we keptd50.1 andt50.01 fixed.
5-9
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an5
2sAp

L
expF2

s2

4 S np

L D 2G , ~49!

which ensure that the wave packet satisfies the boun
conditions, Eq.~3!. Using Poisson’s summation formula w
find the following expressions for the EM field componen

Ez~x,t !5 (
n52`

`

$exp@2~2nL1x1x02ct!2/s2#

2exp@2~2nL1x2x01ct!2/s2#%, ~50!

Hy~x,t !5 (
n52`

`

$exp@2~2nL1x1x02ct!2/s2#

1exp@2~2nL1x2x01ct!2/s2#%, ~51!

from which the exact EM field vectorC(t) is constructed
according to Eq.~18! on the 1D grid~see Fig. 1!.

In Fig. 13 we plotDCn,m(t) as a function of the simula
tion time t for fixed values of the mesh sized and the time
stept using both theT4S2 and theT4S4 algorithms. We
find that the error increases roughly proportional to the sim
lation time:

DCn,m~ t !52 f n,m~t,d!t, ~52!

where we used the prefactor 2 to ensure that 0< f n,m(t,d)
<1. The linear dependence ofDCn,m(t) on t is clearly vis-
ible only for the T4S2 algorithm but is also true for the
T4S4 algorithm with a much smaller slopef 4,4(t,d). Only at
particular timest when the wave packet hits the boundar
of the cavity, the errorDC4,4(t) is seen to increase nonlin
early in the timet and takes a value that is of the same ord
as DC4,2(t). This behavior, not described by Eq.~52!, is
present in fourth-order accurate spatial derivative implem
tations, in which the calculation of the EM field componen
close to system boundaries refer to several nonexisting

FIG. 13. The errorDCn,m(t) as a function of the simulation
time t for fixed values of the mesh sized50.1 and the time step
t50.01. Results are shown for theT4S2 andT4S4 algorithms.
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points. To study the errorDCn,m(t) as a function of the time
stept and the mesh sized, we compute

f n,m~t,d!5
1

2

d

dt
DCn,m~ t !. ~53!

In Fig. 14 we plotf n,m(t,d) as obtained for the 1D cavity by
the four algorithmsT2S2, T4S2, T2S4, and T4S4 as a
function of 1/t for a fixed mesh sized. For each algorithm
TnSmwe find a linear decrease of log@ f n,m(t,d)# with in-
creasing values log@1/t#. For the algorithmsT4S2 and
T4S4 we find that f 4,m(t,d)}t4, while for the T2S2 and
T2S4 algorithmsf 2,m(t,d)}t2. This numerical result is in
agreement with the rigorous upper bound on the error of
EM field vector, Eq.~13!. For decreasing values oft, the
error in the time integration becomes negligibly small a
f n,m(t,d) reaches minimum values that are indicated by
two lines ‘‘exactS2’’ for the algorithmsTnS2 and ‘‘exact
S4’’ for the algorithmsTnS4. In fact, these two lines repre
sent the numerical results that are obtained for an exact
integration andmth-order accurate approximations to th
spatial derivatives.

Next, we studyf n,m(t,d) as a function of the mesh sized
for the fixed ratiot/d50.1 to ensure that the accuracy of th
time integration remains constant. The numerical results
plotted in Fig. 15. We see that log@ f n,m(t,d)# decreases lin-
early with increasing log@1/d# until it levels off. At this
point, the total number of operations has become so la
that it causes the numerical loss of accuracy. Outside
regime we find for theTnS4 algorithmsf n,4(t,d)}d 4 and
for the TnS2 algorithms f n,2(t,d)}d2. In analogy to the
upper bound, Eq.~13!, the upper bound for themth-order
accurate approximation of the spatial derivatives is given

iC~ t !2Cn,m~ t !i<Cn,mtdm, ~54!

whereCn,m is a constant.

FIG. 14. f n,m(t,d) as a function of 1/t for the fixed mesh size
d50.1.
5-10
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We consider a second example to illustrate the numer
performance of the algorithms in 2D systems. For the ini
wave packet in the 2D cavity we make the ansatz

Ez~x,y,t !5sin„k~x2x02ct!…exp@2„~x2x02ct!/sx…
10

2„~y2y0!/sy…
2#. ~55!

At t50 the wave packet is centered at (x0 ,y0) and moves at
t.0 with velocity c in the x direction. The energy of the
wave packet is fixed by the wave numberk in the oscillating
factor and its envelope is Gaussian along they direction and
has sharp edges along thex axis ~due to the exponent 10)
The 2D cavity of size 12310 with «51 andm51 contains
two objects with dielectric constants«55 and m51. The
parameters of the propagating wave packet are (sx ,sy)
5(1.66,1.29), (x0 ,y0)5(3.5,5.5), andk55. In Fig. 16 we
show the results for the error, Eq.~45!, of the T2S2 and
T2S4 algorithms with different mesh sizes relative to a r
erence EM field vectorC(t) that is obtained from theT2S2
algorithm at mesh sized50.025. In all simulations we kep
t50.1d fixed to compare measurements of constant ac
racy in the time integration. In Fig. 16 we show~a! the en-
ergy distribution of the initial wave packet (t50) and~b! the
reference energy density distribution after simulation timt
56 using theT2S2 algorithm. In Fig. 16~c!–~e!, the normal-
ized spatial distribution of the error in the energy dens
distribution,

Dwn,m~r ,t !5uC~r ,t !22Cn,m~r ,t !2u, ~56!

is shown for, respectively, the algorithmT2S2 with d50.1,
the algorithmT2S2 with d50.05, and the algorithmT2S4
with d50.1. We find that the improved spatial discretizati
implementationT2S4 with d50.1 performs as well as a
simple spatial implementationT2S2 with half the mesh size
The main advantage of using theT2S4 algorithm is that it
used only 20% of the computer memory and 10% of
CPU time with respect to theT2S2 algorithm.

FIG. 15. f n,m(t,d) as a function of 1/d for the fixed ratiot/d
50.1.
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VI. CONCLUSIONS

We have demonstrated that the previously introduc
family of unconditionally stable algorithms to solve the tim
dependent Maxwell equations can be implemented wit
grid of variable mesh size and with a fourth-order accur
approximation to the spatial derivatives. The performance
the algorithms has been shown to increase significantly
compared to the previously applied simple spatial implem
tation while at the same time their property of uncondition
stability by construction is preserved. Performing numeri
simulations on various physical model systems, we fou
that a variable grid implementation can save orders of m
nitude in computer memory and CPU time for a physic
system of unregular geometrical shape or with strongly va
ing permeability and/or permittivity. Similar enhancemen
have been obtained for the fourth-order accurate spatial
rivative implementation that does not only reduce the n

FIG. 16. The errorDwn,m(r ,t) for various mesh sizes and algo
rithms in a 2D cavity of size 12310. The origin (0,0) is located a
the lower left corner. Two rectangular blocks of a dielectric mediu
with «55 are located at the~lower left!/~upper right! coordinates
(6.8,1.8)/(8.2,4.8) and (7.8,5.2)/(9.2,8.2), respectively. In vacuum
the energy density distribution is plotted in black at locations
maximum intensity scaling and white at locations of zero intens
Inside the dielectric medium this scheme is inverted.~a! Initial en-
ergy density distributionC(r ,t)2. ~b! Reference energy density dis
tribution C2,2(r ,t)2 at t56 using theT2S2 algorithm with d
50.025.~c! The errorDw2,2(r ,t) on the energy density distribution
at t56 using theT2S2 algorithm withd50.1. The relative devia-
tion is 26%.~d! The errorDw2,2(r ,t) on the energy density distri
bution att56 using theT2S2 algorithm withd50.05. The relative
deviation is 5.9%.~e! The errorDw2,4(r ,t) on the energy density
distribution at t56 using theT2S4 algorithm with d50.1. The
relative deviation is 5.1%.
5-11
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merical dispersion but also improves the temporal and sp
accuracies of the algorithms significantly. Clearly, in clo
analogy to the implementation of the fourth-order appro
mation of the spatial derivatives, the algorithms may be
proved by constructing higher-order approximations. In g
eral, we conclude that the family of unconditionally stab
algorithms does not only preserve the fundamental sym
tries of the time-dependent Maxwell equations but is a
characterized by a high degree of flexibility that allows o
ys

m
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to construct implementations that are required in differ
kinds of specific applications.

ACKNOWLEDGMENTS

This work was partially supported by the Dutch ‘‘Stich
ting Nationale Computer Faciliteiten’’~NCF!. We thank W.
Bruns for providing numerical results generated by the p
gram packageGDFIDL.
ia,

dt,

od

ev.

is
@1# J. S. Kole, M. T. Figge, and H. De Raedt, Phys. Rev. E64,
066705~2001!.

@2# M. Born and E. Wolf,Principles of Optics~Pergamon, Oxford,
1964!.

@3# H. F. Trotter, Proc. Am. Math. Soc.10, 545 ~1959!.
@4# M. Suzuki, S. Miyashita, and A. Kuroda, Prog. Theor. Ph

58, 1377~1977!.
@5# M. Suzuki, J. Math. Phys.26, 601 ~1985!; 32, 400 ~1991!.
@6# H. De Raedt and B. De Raedt, Phys. Rev. A28, 3575~1983!.
@7# H. De Raedt, Comput. Phys. Rep.7, 1 ~1987!.
@8# H. Kobayashi, N. Hatano, and M. Suzuki, Physica A211, 234

~1994!.
@9# H. De Raedt and K. Michielsen, Comput. Phys.8, 600~1994!.

@10# A. Rouhi, J. Wright, Comput. Phys.9, 554 ~1995!.
@11# B. A. Shadwick and W. F. Buell, Phys. Rev. Lett.79, 5189

~1997!.
@12# M. Krech, A. Bunker, and D. P. Landau, Comput. Phys. Co
.

-

mun.111, 1 ~1998!.
@13# P. Tran, Phys. Rev. E58, 8049~1998!.
@14# K. Michielsen, H. De Raedt, J. Przeslawski, and N. Garc

Phys. Rep.304, 89 ~1998!.
@15# H. De Raedt, A. H. Hams, K. Michielsen, and K. De Rae

Comput. Phys. Commun.132, 1 ~2000!.
@16# K. S. Yee, IEEE Trans. Antennas Propag.14, 302 ~1966!.
@17# A. Taflove and S. C. Hagness, Computational

Electrodynamics—The Finite-Difference Time-Domain Meth
~Artech House, Boston, 2000!.

@18# For information about the program packageGDFIDL, see: http://
www.gdfidl.de

@19# R. Alben, M. Blume, H. Krakauer, and L. Schwartz, Phys. R
B 12, 4090~1975!.

@20# A. Hams and H. De Raedt, Phys. Rev. E62, 4365~2000!.
@21# See F. Scheid,Theory and Problems of Numerical Analys

~McGraw-Hill, New York, 1968!, Chap. 13.
5-12


